

Table of content

1. General	1
2. Product overview	1
2.1 Hardware interfaces	2
2.2 Control buttons	3
2.3 Status LEDs	4
2.4 Typical setups	4
3. Functionality and USB API commands	6
3.1 USB Serial settings	6
3.2 Measure power parameters	7
3.3 Control power outputs	11
3.4 Scheduling	13
3.5 Monitoring	14
3.6 Device settings	20
3.7 X-talk sensors	21
4. Network connectivity and Sensmi Dashboard	23
4.1 Provisioning	23
4.2 Dashboard	24

1. General

NEO power controllers can measure and control their on-board power outputs. Typically this is used to measure the power consumption of each component in an installation, remotely control start-up and shut-down sequences, and reduce energy consumption.

The information in this document is created for users who are familiar with the Nexmosphere API and are able to control a basic setup with a Nexmosphere API controller. If this is not the case yet, please read the general documentation on the Nexmosphere serial API first.

2. Product overview

NEO power controllers are available in 6 different models:

	NEO 320	NEO 520	NEO 620	NEO 340	NEO 540	NEO 640
Outputs individually controllable		2 outputs C13			4 outputs C13	
Measure parameters	V voltage A o	current W power	r KwH usage	V voltage A	urrent W power	r KwH usage
Control output switching	-	V	~	-	V	~
USB API interface	✓	~	~	~	~	~
Network connectivity	-	-	~	-	-	~
Cloud dashboard	-	-	~	-	-	~
X-talk channels	4 X-talk ch	annels for sensor	interfacing	4 X-talk cha	annels for sensor	interfacing
Input voltage range		100 - 230 VAC	,		100 - 230 VAC	;
Power max rating		10			10A	

2.1 - Hardware interfaces

FRONT

NEO320 | NEO340 | NEO520 | NEO540

NEO620 | NEO640

1	X-talk interface 001
2	X-talk interface 002
3	X-talk interface 003
4	X-talk interface 004
U	USB-C API interface
N	RJ45 Network connector
IN	C14 Power input

BACK

NEO320 | NEO520 | NEO620

NEO340 | NEO540 | NEO640

C13 Power output 1	P1
C13 Power output 2	P2
C13 Power output 3	Р3
C13 Power output 4	P4

Power output connection order

The NEO controller performs highly precise, detailed power measurements for which (small) cross talk can already cause fluctuation in the power measurement data.

To make sure the NEO controller measurements are as precise as possible, connect the device with the highest power consumption to power output 1, the device with the secondhighest power consumption to output 2, and so on.

Furthermore, unused or unconnected power outputs must be switched off (see section 3.3 Control Power Outputs).

2.2 - Control buttons

А	Control button A
В	Control button B

The control buttons provide options for manually adjusting the mode when you have physical access to the NEO device. These are explained in the chapter of each corresponding functionality. Below is a summary of the available options.

Initiate start-up sequence Push button A for 5 seconds

API message when start-up sequence is initiated

P000B[BUTTON=STARTUPSEQ]

Initiate shut-down sequence Push button B for 5 seconds

API message when shut-down sequence is initiated

P000B[BUTTON=SHUTDOWNSEQ]

Set the NEO to "Simple Socket" mode Push button A+B for 10 seconds

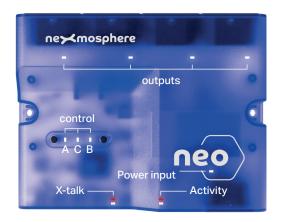
API message when Simple Socket mode is initiated

P000B[BUTTON=SIMPLESOCKET]

Set the NEO back to "Smart Socket" mode Push button A+B for 10 seconds

API message when Smart Socket mode is initiated

P000B[BUTTON=SMARTSOCKET]


Trigger "button is pressed" API message Press button A or press button B

API message for button A API message for button B
P000B[BUTTONA=PRESSED] P000B[BUTTONB=PRESSED]

Trigger "button is released" API message Release button A or press button B

API message for button A API message for button B
P000B[BUTTONA=RELEASED] P000B[BUTTONB=RELEASED]

2.3 - Status LEDs

Outputs

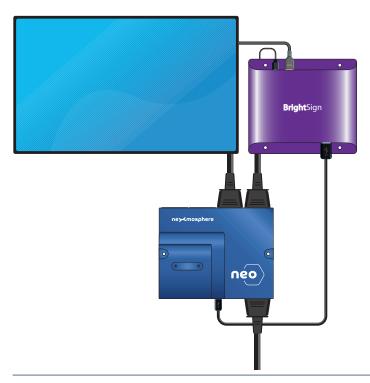
Each power output has a dedicated status LED which is on when the output is switched \mbox{ON} , and \mbox{off} when the output is switched \mbox{OFF} .

Power input

When the AC power input is above 80V, the status LED will be on. If the AC power input is below 80V, the status LED will be off.

X-talk

The X-talk status LEDs show the same behaviour as Nexmosphere controllers with USB API interface. The white LED blinks when a sensor is triggered, or an X-talk command is received. The red LED will blink when an invalid X-talk command is received.

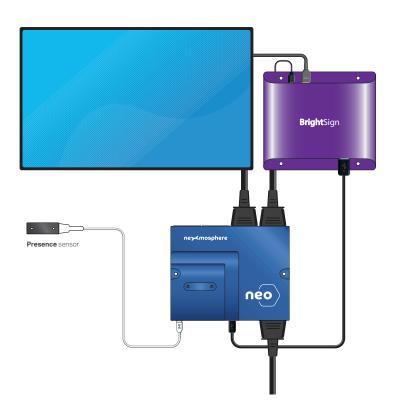

Activity

The white LED blinks when a command is sent or received, either via USB or Ethernet (UTP). The red LED blinks when an invalid command is received, or, in case of a controller error.

Control

When button A is pressed, control LED A starts to blink slow. If the button is held for 5 seconds, it will continue to blink at medium speed. If the button is held for 10 seconds, it will continue to blink fast. The same applies to button B and control LED B.

2.4 - Typical setups

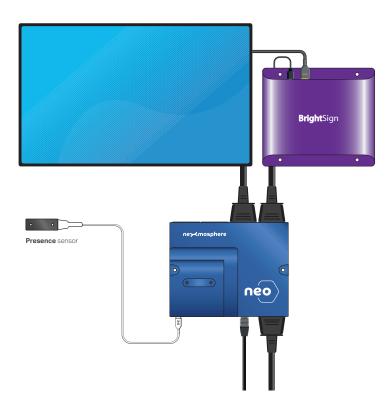


Example 1: USB-C connection to player

The NEO controller is connected to a PC or digital signage player via USB-C.

The digital signage player utilizes the USB API to control the power outputs on the NEO device and obtain power-measurement data.

Both the digital signage player and the screen are powered via the NEO controller.



Example 2: USB-C connection, with sensor

This example is similar to Example 1. In this case, a presence sensor is added, the output of which will also be sent to the digital signage player.

Based on the sensor status, the NEO Controller can be set to switch ON or OFF power outputs, for example to switch on a screen when a person is detected by the presence sensor.

Other examples include connecting an ambient light sensor, and use the ambient light value as input to adjust the screen brightness to save power.

Example 3: Network connection

Instead of connecting the NEO controller via USB. NEO6xx models can connect to your network via its UTP connector. When connected, pre-built online dashboards powered by Sensmi provide real-time power measurement data and power controls.

3.1 USB Serial settings

When connecting the NEO controller via its USB-C connector to a PC or player, a virtual COM port is created on the connected device. The Virtual COM Port chip used in the NEO controller is the Prolific PL2303GL. The driver for this chip is typically already embedded in the OS (for example BrightSign, Windows, Android, Linux, Tizen). The latest driver can be downloaded on the following page, under the tab resources https://prolificusa.com/product/pl2303gl-8-pin-usb-uart-bridge-controller/.

The virtual COM port facilitates serial communication between the NEO controller and the connected device. Each USB API command explained in this manual is an ASCII command sent or received via the virtual COM port. The following settings must be applied on the serial port

Baudrate	115200	Flow Control	None
Parity	None	EOL	CR+LF
Data	Bits 8	Protocol	ASCII
Stop	Bits 1		

Software setup for USB testing (Terminal)

Typically, the NEO controller is connected to a 3rd party device, such as a Digital Signage Player, on which CMS software is installed that has built-in functionality for sending and receiving Serial Events. However, if you want to do a first test on a PC, follow the instructions below:

- 1. Download a terminal program. For example Termite or Hercules.
- 2. Open the Terminal program and go to settings. Choose the COM port on which the NEO controller enumerated*. In most cases, this is the highest available number in the COM port drop-down setting.
- 3. Set the COM port settings to the values indicated above
- 4. Set the COM port to "Open". The controller is now ready for use.

^{*}In case the NEO controller is not recognized as a COM port by the 3rd party device, a driver (Prolific PL2303) can be downloaded here.

3.2 Measure power parameters

All NEO models can measure the real-time power parameters of each individual output. In this section, the commands to obtain the power parameters via the USB API interface are provided.

Voltage

P000B[INPUTVOLTAGE?]

Request the real-time voltage level on the AC input

The reply from the NEO controller will have the following format

P000B[INPUTVOLTAGE=VVV.VVV]

VVV.VVV=Voltage level 000.000 - 240.000 (Volts)

Example reply:

P000B[INPUTVOLTAGE=219.314]

The voltage level on the power outputs is the same as the input voltage level. Therefore, there is no "output voltage" request.

Output current

P000B[OUTPUTXCURRENT?]

Request the real-time current level for an individual output

X = output nr **1 - 4**

Example request for output 2: P000B[OUTPUT2CURRENT?]

The reply from the NEO controller will have the following format

P000B[OUTPUTXCURRENT=CC.CCC]

X = output nr **1 - 4**

CC.CCC=Amount of current 00.000 - 16.000 (Ampere)

Example reply for output 2: P000B[OUTPUT2CURRENT=03.314]

Output power

P000B[OUTPUTXPOWER?]

Request the real-time power level for an individual output

X = output nr **1 - 4**

Example request for output 3: P000B[OUTPUT3POWER?]

The reply from the NEO controller will have the following format

P000B[OUTPUTXPOWER=PPPP.PPP]

X = output nr **1 - 4**

PPPP.PPP=Amount of current 0000.000 - 2300.000 (Watt)

Example reply for output 3: P000B[OUTPUT3POWER=1201.917]

Output usage

P000B[OUTPUTXUSAGE?]

Request the usage for an individual output

X = output nr **1 - 4**

Example request for output 3: P000B[OUTPUT3POWER?]

The reply from the NEO controller will have the following format

P000B[OUTPUTXUSAGE=UUUUU.UUU]

X = output nr **1 - 4**

UUUUU.UUU= Usage **00000.000 - 99999.999** (kWh)

Example reply for output 1: P000B[OUTPUT3USAGE=03410.917]

The usage value can be reset to 0 via the following API command

P000B[OUTPUTX=USAGERESET]

Reset the usage for an individual output

X =output nr 1 - 4 or S for all outputs simultaneously

Example command to reset the

usage of output 4 :

Example command to reset the usage of all outputs:

P000B[OUTPUT4=USAGERESET]

P000B[OUTPUTS=USAGERESET]

Output status

P000B[OUTPUTXSTATUS?]

Request the current status of a specific output

X = output nr 1 - 4

Example request for output 2: P000B[OUTPUT1STATUS?

The reply from the NEO controller will have the following format

P000B[OUTPUTX=***]

X = output nr **1 - 4**

***= output status ON or OFF

Example reply: P000B[OUTPUT2=ON]

Power input measurements

Next to measuring the power outputs, the parameters of the AC power input can also be requested:

Input voltage

P000B[INPUTVOLTAGE?]

Request the real-time voltage level on the AC input

The reply from the NEO controller will have the following format

P000B[INPUTVOLTAGE=VVV.VVV]

VVV.VV=Voltage level 000.000 - 240.000 (Volts)

Example reply:

P000B[INPUTVOLTAGE=219.314]

Input current

P000B[INPUTCURRENT?]

Request the real-time current level of the AC input

The reply from the NEO controller will have the following format

POOOB[INPUTCURRENT=CC.CCC]

CC.CCC=Amount of current 00.000 - 16.000 (Ampere)

Example reply:

P000B[INPUTCURRENT=007.404]

Input power

P000B[INPUTPOWER?]

Request the real-time power level of the AC input

The reply from the NEO controller will have the following format

P000B[INPUTPOWER=PPPP.PPP]

PPPP.PPP=Amount of power **0000.000 - 2300.000** (Watt)

Example reply:

P000B[INPUTPOWER=1201.917]

Input usage

P000B[INPUTUSAGE?]

Request the usage for the AC input

The reply from the NEO controller will have the following format

P000B[INPUTUSAGE=UUUUUU.UUU]

UUUUU.UUU= Usage 00000.000 - 99999.999 (kWh)

Example reply:

P000B[INPUTUSAGE=05823.446]

The usage value can be reset to 0 via the following API command

P000B[INPUT=USAGERESET]

Reset the usage level of the AC input.

CAUTION: resetting the usage level of the input, also resets the usage level of all outputs and of the NEO device itself.

Input status

P000B[INPUTSTATUS?]

Request the current status of the AC power input

The reply from the NEO controller will have the following format

P000B[INPUT=***]

***= input status **ON** or **OFF**

Example reply: P000B[INPUT=ON]

The OFF reply can only be given by NEO320 and NEO340 controllers, as their internal ICs are powered via the USB-C input, and not via the AC input. All other controllers will not reply when there is no AC power input, as the controller itself will have no power and therefore will not be able to reply. The ON reply will be given on ALL NEO controllers

NEO device measurements

The power parameters of the NEO device itself can also be requested. In case sensors are connected to the X-talk interfaces of the NEO controller, their current, power and usage are added to the device power parameters.

Device current

P000B[DEVICECURRENT?]

Request the real-time current level of the NEO device

The reply from the NEO controller will have the following format

P000B[DEVICECURRENT=CC.CCC]

CC.CCC=Amount of current 00.000 - 16.000 (Ampere)

Example reply:

P000B[DEVICECURRENT=000.016]

Device power

P000B[DEVICEPOWER?]

Request the real-time power level of the NEO device

The reply from the NEO controller will have the following format

P000B[DEVICEPOWER=PPPP.PPP]

PPPP.PPP=Amount of current **0000.000 - 2300.000** (Watt)

Example reply:

P000B[DEVICEPOWER=0001.580]

Device usage

P000B[DEVICEUSAGE?]

Request the usage of the NEO device

The reply from the NEO controller will have the following format

P000B[DEVICEUSAGE=UUUUU.UUU]

UUUUU.UUU= Usage **00000.000 - 99999.999** (kWh)

Example reply:

P000B[DEVICEUSAGE=00002.351]

The usage value can be reset to 0 via the following API command

P000B[DEVICE=USAGERESET]

Reset the usage level of the NEO device

When high loads are connected to the output of the NEO device, it is not possible to accurately measure the device usage, and therefore the reply device usage parameter will be 0.

Autosend power measurements

Alternatively to requesting the real-time parameters of the power measurements, the NEO controller can also be configured to send data automatically at a set interval.

Configure autosend

P000B[AUTOSEND=OUTPUTX:***..***:###]

Autosend specific measurements parameters

 $X = \text{output nr } \mathbf{1 - 4} \text{ or } \mathbf{S} \text{ for all outputs simultaneously}$

.. = power parameter VOLTAGE, CURRENT, POWER, USAGE or ALL

= interval 0001 - 3600 seconds or OFF

Example configuration to autosend the real-time voltage level of output1 every 15 seconds:

P000B[AUTOSEND=OUTPUT1:VOLTAGE:0015]

Example configuration to autosend the real-time current level of output 2 every 30 seconds:

P000B[AUTOSEND=OUTPUT2:CURRENT:0030]

Example configuration to autosend the real-time power level of output 3 every 60 seconds:

P000B[AUTOSEND=OUTPUT3:POWER:0060]

Example configuration to autosend the usage of output 4 every hour (3600 seconds):

P000B[AUTOSEND=OUTPUT4:USAGE:3600]

Example configuration to autosend all parameters of all outputs every 15 minutes (900 seconds):

P000B[AUTOSEND=OUTPUTS:ALL:0900]

Example configuration to disable autosend of the usage for output 1

P000B[AUTOSEND=OUTPUT1:USAGE:OFF]

The API messages that the autosend configuration triggers are identical to the reply commands of the data requests listed on page 6 and 7. The autosend configuration can also be applied on the power measurements of the AC input, as well as on the power measurements of the NEO device itself.:

P000B[AUTOSEND=INPUT:***..***:####]

Autosend specific measurements parameter of the AC input

.. = power parameter VOLTAGE, CURRENT, POWER, USAGE ALL

= interval 0001 - 3600 seconds or OFF

P000B[AUTOSEND=DEVICE:***..***:###]

Autosend specific measurements parameter of the NEO device itself

.. = power parameter VOLTAGE, CURRENT, POWER, USAGE ALL or OFF

= interval 0001 - 3600 seconds or OFF

3.3 Control power outputs

The NEO 5xx Series and NEO 6xx series offer the option to switch the power outputs ON or OFF. In this section, the available commands for output control via the USB API interface are provided.

Switch power outputs - ON or OFF

P000B[OUTPUTX=ON]

Switch a power output ON

 $X = \text{output nr } \mathbf{1} - \mathbf{4} \text{ or } \mathbf{S} \text{ for all outputs simultaneously}$

Example command for output 1: P000B[OUTPUT1=ON]

Example command for all outputs:

P000B[OUTPUTS=ON]

P000B[OUTPUTX=OFF]

Switch a power output OFF

X =output nr 1 - 4or Sfor all outputs simultaneously

Example command for output 4: P000B[OUTPUT4=OFF]

Example command for all outputs:

P000B[OUTPUTS=OFF]

When a power output is ON, the status LED of the corresponding output will be ON. When a power output is off, the status LED of the corresponding output will be OFF. When an output does not have a device connected to it, the output needs to be switched OFF.

Toggle outputs - switch to the opposite state

P000B[OUTPUTX=TOGGLE]

Toggle a power output

 $X = \text{output nr } \mathbf{1 - 4} \text{ or } \mathbf{S} \text{ for all outputs simultaneously}$

Example command for output 3:

Example command for all outputs:

P000B[OUTPUTS=TOGGLE]

When a power output receives a toggle command, it will switch to the opposite state. When a power output is ON, a toggle command will switch the power output OFF. When a power output is OFF, a toggle command will switch the power output ON. After a toggle command, the new status of the output is indicated via an API message, for example *PoodB[OUTPUT3=ON]*.

Cycle outputs - ON or OFF

P000B[OUTPUTX=CYCLEON]

Cycle an output to ON. The output will first go off.

X = output nr 1 - 4 or S for all outputs simultaneously

Example command for output 2: P000B[OUTPUT2=CYCLEON]

Example command for all outputs: P000B[OUTPUTS=CYCLEON]

P000B[OUTPUTX=CYCLEOFF]

Cycle an output to OFF. The output will first go on.

X =output nr **1 - 4** or **S** for all outputs simultaneously

Example command for output 1: P000B[OUTPUT1=CYCLEOFF]

Example command for all outputs: P000B[OUTPUTS=CYCLEOFF]

P000B[CYCLETIMEXX=##]

Set the cycletime for a specific output

XX = output nr **01 - 04** or **AO** for all outputs simultaneously

= cycletime 01 - 60 seconds. Default = 10 seconds.

Example to set output 1 to 10s: P000B[CYCLETIME01=10]

Example to set all outputs to 20s: P000BICYCLETIMEAO=201

The cycle time sets how long an output will be in the opposite state. For example, when the cycletime is 10 seconds, and an CYCLEON command is sent, the sequence is: Output switches OFF - waits 10 seconds - then switches ON.

Power control sequence

Next to individually switching the power outputs, the NEO controller can also execute a power sequence command. A power sequence command allows you to switch all 4 outputs ON or OFF one by one, in a timed sequence. This facilitates controlled booting of systems in which there is a particular order in which the components must be powered. For example, when a screen must be powered up before the mediaplayer. The API commands for power control sequences are:

P000B[STARTUPSEQ=T1:T2:T3:T4]

Set the power sequence for switching outputs ON

T1 = time in 000-999 seconds to switch output 1 ON, or, leave it OFF. Def = 000 T2 = time in 000-999 seconds to switch output 2 ON, or, leave it OFF. Def = 000 T3 = time in 000-999 seconds to switch output 3 ON, or, leave it OFF. Def = 000 T4 = time in 000-999 seconds to switch output 4 ON, or, leave it OFF Def = 000

Example command for a power sequence to switch output 1 on immediately, output 2 after 5 seconds, output after 20 seconds, and leave output 4 OFF: P000B[STARTUP=000:005:020:OFF]

P000B[SHUTDOWNSEQ=T1:T2:T3:T4]

Set the power sequence for switching outputs OFF

T1 = time in 000-999 seconds to switch output 1. Default = 000

T2 = time in 000-999 seconds to switch output 2. Default = 000

T3 = time in 000-999 seconds to switch output 3. Default = 000

T4 = time in **000-999** seconds to switch output 4. Default = 000

Example command for a power sequence to switch output 1 off immediately, output 2 after 3 seconds, output after 60 seconds, and output 4 after 90s: P000B[SHUTDOWN=000:003:060:90]

P000B [POWERONSEQ=T1:T2:T3:T4]

Set the power sequence to automate the behavior of the power outputs when the NEO controller is powered on (AC input)

T1 = time in **000-999** seconds to switch output 1 ON, or, leave it **OFF**. Def = 000

T2 = time in **000-999** seconds to switch output 2 ON, or, leave it **OFF**. Def = 000

T3 = time in **000-999** seconds to switch output 3 ON, or, leave it **OFF**. Def = 000

T4 = time in **000-999** seconds to switch output 4 ON, or, leave it **OFF**. Def = 000

Example command for a power sequence to automatically switch output 1 on after 7 seconds of NEO powerup, output 2 after 11 seconds, output 3 after 40 seconds, and output 4 after 120 seconds

P000B[POWERON=007:011:040:120]

The timings listed above are all measured absolute from the moment the command is sent (or the NEO device is powered). For example, if for a STARTUP command T1 = 3 seconds, and T2 = 5 seconds, the difference between output 1 and output 2 powering on is 2 seconds.

To initiate a startup or shutdown sequence, use the following API commands:

P000B[STARTUP]

P000B[SHUTDOWN]

Initiate startup sequence

Initiate shutdown sequence

The STARTUP and SHUTDOWN sequence can also be initiated via the physical control buttons on the NEO device itself. For more information, please see the section 2.2 "Control buttons".

5627 SW Eindhoven • The Netherlands

3.4 Scheduling

All NEO devices have an on-board Real Time Clock that allows you to schedule power control for specific times and days. In this section, the available commands for creating schedules via the USB API interface are provided.

Schedule power control

P000B[SCHED##=**..**:TIME:DAY]

Create a power schedule

= schedule nr **01 - 16**

.. = operation 010N, 020N, 030N, 040N,
010FF, 020FF, 030FF, 040FF,
ALLON, ALLOFF, STARTUP, SHUTDOWN

Time = time 00.00 - 23.59

Day = day MON, TUE, WED, THU, FRI, SAT, SUN

ALL, WEE (weekdays), WND (weekends),

Example command for schedule 01 to switch all outputs ON at 08.00 on all days of the week:

P000B[SCHED01=ALLON:08.00:ALL]

Example command for schedule 02 to switch all outputs OFF at 18.00 on all days of the week:

P000B[SCHED02=ALLOFF:18.00:ALL]

Example command for schedule 03 to switch output 1 ON at 07.00 on weekdays (Mon-Fri):

P000B[SCHED03=010N:07.00:WEE]

Example command for schedule 04 to switch output 2 OFF at 23.00 on weekends (Sat-Sun):

P000B[SCHED04=020FF:23.00:WND]

Example command for schedule 15 to execute the startup sequence (see page 9) at 06.00 on Mondays:

P000B[SCHED15=STARTUP:06.00:MON]

Example command for schedule 16 to execute the shutdown sequence (see page 9) at 19.00 on Fridays:

P000B[SCHED16=SHUTDOWN:19.00:FRI]

In order for schedules to work accurately, please check whether the time currently set on the Real Time Clock is correct for your time zone (see section 3.6 Device settings).

Manage power schedules

P000B[SCHED##?]

Request the currently set parameters for a specific schedule

= schedule nr **01 - 16**

P000B[SCHED##CLEAR]

Clear a specific schedule

= schedule nr 01 - 16

P000B[CLEARALLSCHEDULES]

Request the currently set parameters for all schedules

The reply to a schedule request is identical to the commands used to create the schedule. For example:

P000B[SCHED01=ALLON:0800:ALL]

3.5 Monitoring

All NEO devices have a range of smart monitoring features to track status and health of your system. Additionally several safeguard functions can be used to increase the robustness of your installation. This section is divided in the following topics:

Watchdogs page 14-15
Soft fuses page 16
Min/Max waring page 16
Diagnostic counters page 17
Run time tracking page 18
Last event logging page 19

Watchdogs

The watchdog feature in NEO is a timer that toggles a specific power output when it expires. It can be reset by sending an API command from the connected device to the NEO controller. This feature is typically used to detect whether a connected device—such as a media player—has frozen, and if so, to automatically power-cycle the device.

P000B[WATCHDOGXTIMER=####]

Configure a watchdog timer

X = output nr **1 - 4**

= timer duration 001 - 3600 seconds 0000 = disable watchdog (default)

Example command to configure the watchdog for output 1 to 360 seconds.

P000B[WATCHDOG1TIMER=0360]

P000B[WATCHDOGX]

Call a watchdog to reset its running timer

X = output nr **1 - 4**

Example command to reset the timer of watchdog 2

P000B[WATCHDOG2]

When a watchdog is triggered, the corresponding output is toggled with the set cycletime of the output (see section 3.3). After the output is toggled, the watchdog will wait for 30 seconds before it is activated again. This gives the connected device time to reboot and start resetting the watchdog timer.

When a watchdog is activated, the following API message is sent:

P000B[WATCHDOGXSTARTED]

X = output nr **1 - 4**

Example reply:

P000B[WATCHDOG1STARTED]

When a watchdog is triggered and the correspoding output is toggled, the following API message is sent:

P000B[WATCHDOGXTRIGGERED]

X = output nr **1 - 4**

Example reply:

P000B[WATCHDOG1TRIGGERED]

To avoid an endless loop of power cycles being caused by a watchdog (in case a device does not recover), the number of times that a watchdog will attempt to recover the device can be configured.

P000B[WATCHDOGXMAXTRY=##]

Set the number of consecutive attempts for which a watchdog will trigger a power cycle

X = output nr **1 - 4**

= number of attempts **01** - **10**

00 = endless Default = 02

Example command to set the max attempts of the watchdog for output 4 to 3 times

P000B[WATCHDOG4MAXTRY=03]

When a watchdog is deactivated due to the maximum attempts being reached, the following API message is sent:

P000B[WATCHDOGXSTOPPED]

X = output nr **1 - 4**

Example reply:

P000B[WATCHDOG1STOPPED]

A watchdog can be re-activated by calling the watchdog via the **POODE WATCHDOGX** command.

The current set value of the watchdog timer, as well as the current status of the watchdog can be requested at any time via the following API commands:

P000B[WATCHDOGXTIMER?]

Request the current value of a watchdog timer

X = output nr **1 - 4**

The reply from the NEO controller will have the following format

P000B[WATCHDOGXTIMER=####]

X = output nr 1 - 4

= timer duration 001 - 3600 seconds

Example reply:

P000B[WATCHDOG1TIMER=0060]

P000B[WATCHDOGXSTATUS?]

Request the current status of a watchdog

X = output nr **1 - 4**

The reply from the NEO controller will have the following format

P000B[WATCHDOGXSTATUS=***]

X = output nr **1 - 4**

*** = status ON, OFF or MAXTRY

Example reply:

P000B[WATCHDOG1STATUS=ON]

Soft fuse

For each power output, a soft fuse can be set. When the measured current of an output exceeds the soft fuse value, the corresponding power output will automatically switch off.

P000B[OUTPUTXSOFTFUSE=CC.CCC]

Set the trigger level of the soft fuse

X = output nr 1 - 4

CC.CCC = Amount of current **00.000 - 09.999** (Ampere) Default =09.500

Example command to set the soft fuse for output 1 to 2.5 Amp. P000B[OUTPUT1SOFTFUSE=02.500]

When a soft fuse is triggered, the NEO device automatically sends the following API message:

P000B[OUTPUTXSOFTFUSE]

X = output nr **1 - 4**

Example reply:

P000B[OUTPUT1SOFTFUSE]

Min and Max warnings

Next to the soft fuse, the NEO device can also be configured to send warning messages when a power output goes above or below a certain level. These levels can be set via the following API commands:

P000B [OUTPUTXMINWARNING=PPPP.PPP] Set the trigger level for a minimum power warning

X = output nr **1 - 4**

PPPP.PPP=Amount of power **0000.000 - 2300.000** (Watt) Default =2300.000

Example command to set the min warning level for output 2 to 14 Watt. P000B[OUTPUT2MINWARNING=0014.000]

P000B[OUTPUTXMAXWARNING=PPPP.PPP]

Set the trigger level for a maximum power warning

X = output nr **1 - 4**

PPPP.PPP=Amount of power **0000.000 - 2300.000** (Watt) Default =2300.000

Example command to set the max warning level for output 3 to 450 Watt. P000B[OUTPUT3MAXWARNING=0450.000]

When the power level of an output goes below the set minimum power level, the following API message is sent:

P000B[OUTPUTXMINWARNING]

X = output nr 1 - 4

Example reply:

P000B[OUTPUT2MINWARNING]

When the power level of an output goes above the set maximum power level, the following API message is sent:

P000B[OUTPUTXMAXWARNING]

X = output nr 1 - 4

Example reply:

P000B[OUTPUT3MAXWARNING]

Diagnostic counters

The NEO controller has several automated counters to track the number of times that specific power-related events occurred. This data can for example be used to analyze unexpected scenarios and find the root cause of malfunctioning or broken devices in your setup.

P000B[OUTPUTXSWITCHEDCOUNT?]

Request the number of times an output was switched from OFF to ON

X = output nr **1 - 4**

Example command for output 1 P000B[OUTPUT1SWITCHEDCOUNT?]

P000B[OUTPUTXSWITCHEDOFFUNDERLOAD?]

Request the number of times an output was switched off under load (>5W), typically meaning the connected device was powered on, and not switched off

X = output nr **1 - 4**

Example command for output 2

P000B[OUTPUT2SWITCHEDOFFUNDERLOAD?]

P000B [REGULARPOWEROFF?]

Request the number of times the **input** power of the NEO device was cut off when all **outputs** were switched off

P000B[IRREGULARPOWEROFF?]

Request the number of times the **input** power of the NEO device was cut off when there was still at least one **output** switched on

The replies of the NEO device will be as follows:

P000B[OUTPUTXSWITCHEDCOUNT=#####]
P000B[OUTPUTXSWITCHEDUNDERLOAD=#####]
P000B[REGULARPOWEROFF=#####]
P000B[IRREGULARPOWEROFF=#####]

X = output nr **1 - 4** ###### = count nr **0 - 999999**

Example reply for the number of times output 2 was switched P000B[OUTPUT2SWITCHEDCOUNT=000012]

The counters can be reset to 0 by sending the following API commands to the NEO device:

P000B[OUTPUTXSWITCHEDCOUNT=RESET]

Reset the number of times an output was switched from OFF to ON AND reset the number of times an output was switched off under load

X = output nr **1 - 4**

Example command for output 3

P000B[OUTPUT3SWITCHEDCOUNT=RESET]

P000B[REGULARPOWEROFF=RESET]

Reset the number of times the **input** power of the NEO device was cut off when all **outputs** were switched off

P000B[IRREGULARPOWEROFF=RESET]

Reset the number of times the **input** power of the NEO device was cut off when there was still at least one **output** switched on

Run time tracking

The NEO controller tracks the run time of the NEO device itself, as well as each individual output. This data can for example be used to schedule maintenance or check on warranty and lifetime requirements of the connected devices.

P000B[OUTPUTXRUNTIME?]

Request how long an output currently has been switched on consecutively

X = output nr 1 - 4

Example command for output 4 P000B[OUTPUT4RUNTIME?]

P000B[RUNTIME?]

Request how long the NEO device has been powered on consecutively

The reply of the NEO device to both requests will be as follows:

P000B[RUNTIME=####D-&&H]

Operation time tracking

The NEO controller tracks the operation time of the NEO device itself, as well as each individual output.

P000B[OUTPUTXOPERATIONTIME?]

Request how long an output has been switched on cumulatively

X = output nr 1 - 4

Example command for output 1 P000B[OUTPUT1OPERATIONTIME?]

P000B[OPERATIONTIME?

Request how long the NEO device has been switched on cumulatively

The reply of the NEO device to both requests will be as follows:

P000B[OPERATIONTIME=####D-&&H]

Last event logging

The NEO controller tracks and stores the date and time of specific power-related events. These can be used for logging purposes but also to analyze unexpected scenarios.

P000B[OUTPUTXLASTTIMESWITCHEDON?]

Request the last time an output was switched on since the NEO device was last powered

X = output nr **1 - 4**

Example command for output 4

P000B[OUTPUT4LASTTIMESWITCHEDON?]

P000B[OUTPUTXLASTTIMESWITCHEDOFF?]

Request the last time an output was switched off since the NEO device was last powered

X = output nr **1 - 4**

Example command for output 2

P000B[OUTPUT2LASTTIMESWITCHEDOFF?]

P000B[LASTTIMEPOWERON?]

Request the last time the NEO device was powered on

P000B[LASTTIMEPOWEROFF?]

Request the last time the NEO device was powered on

The reply of the NEO device will be as follows:

POOOB[TIME=HH.MM.SS-DD/MM/YYYY]

X = output nr **1 - 4**

Example reply:

P000B[TIME=21.30.22-14/02/2025]

When a NEO device looses power on its AC power input, it will automatically send the following API message:

P000B[VOLTAGELOST!]

The NEO device has lost power on AC input

3.6 Device settings

In this section, the available commands for adjusting and accessing general device settings via the USB API interface are provided.

Set time

S000B[TIME=HH.MM.SS-DD/MM/YYYY]

Set the time for the Real Time Clock

Example command to set the time to 12:40:52 and the date to 01-04-2025 is: S000B[TIME=12.40.52-01/04/2025]

The Real Time Clock automatically calculates the weekday (Mon - Sun) based on the given date. When the NEO controller is unplugged from the power input, the time and date will stay accurate for ~3 months. The current time can be requested at any given moment via the following command:

S000B[TIME?]

Request the current time

The reply to a schedule request is identical to the commands used to create the schedule. For example: S000B[TIME=12.40.52-01/04/2025]

The model name of the NEO device can be requested by sending the following API command:

S000B[MODEL?]

Request the model name of the NEO device

The reply from the NEO controller will have the following format

S000B[MODEL=*****]

***** = model name **NEO640**, **NEO620**, **NEO540**, **NEO520**, **NEO340** or **NEO320**

Example reply for NEO-640: S000B[MODEL=NEO640]

The current firmware version of the NEO device can be requested by sending the following API command:

S000B[FWVERSION?]

Request the current firmware version

The reply from the NEO controller will have the following format

S000B[FWVERSION=##.##.##]

##.##.## = firmware version 00.00.00 - 99.99.99

Example reply:

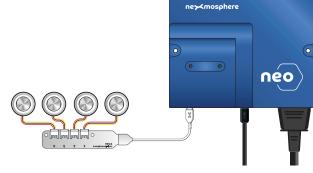
S000B[FWVERSION=01.01.01]

3.7 X-talk sensors

Sensor output

Nexmosphere controllers and sensors per default work trigger-based, meaning that an API message is automatically sent when a sensor detects a new event. The API messages indicating the sensor status are identical on all Nexmosphere controllers, including the NEO controllers. This means that the output of each sensor which is exactly as indicated in the sensor Product Manuals (available on nexmosphere.com/support), is sent via the USB Serial API.

API message of a **presence sensor** connected to **X-talk channel 004** that detected a person in **distance zone 3 X004B[Dz=03]**


Control input

Nexmosphere offers various Elements of which the output can be controlled, for example button LEDs and I/O interfaces. Next to this, some sensors require configuration, such as the lidar sensor. This is done by sending control commands via the USB serial API to the NEO controller.

The API commands are identical on all Nexmosphere controllers, including the NEO controllers. This means that the commands to control an output or the configure a sensor is exactly as indicated in the sensor Product Manuals (available on our support page) or Controller Quick Start Guide.

API command to set all **button LEDs** connected to **X-talk channel 003** to a slow blinking output

X003A[170]

Sensor settings

All Nexmosphere Elements have settings to adjust the behaviour and output of the sensors. This is done by sending Setting commands via the USB serial API to the NEO controller. The API commands for this are identical on all Nexmosphere controllers, including the NEO controllers. This means that the commands to adjust the settings of a sensor are exactly as indicated in the sensor Product Manuals (available on our support page).

Power control of X-talk

The NEO 5xx Series and NEO 6xx series offer the option to switch the power of the X-talk interfaces ON or OFF.

P000B[XTALK=ON]
P000B[XTALK=OFF]
P000B[XTALK=TOGGLE]
P000B[XTALK=CYCLEON]
P000B[XTALK=CYCLEOFF]

P000B[CYCLETIMEXT=##]

Switch all X-talk interfaces ON

Switch all X-talk interfaces OFF

Toggle all X-talk interfaces

Cycle an output to ON. The output will first go off.

Cycle an output to OFF. The output will first go on.

Set the cycletime for a specific output

= cycletime 01 - 60 seconds. Default = 05 seconds.

Example to set power cycle time for the X-talk interfaces to 8 seconds: P000B[CYCLETIMEXT=08]

When the X-talk interfaces receive a toggle command, they will switch to the opposite state. When they are ON, a toggle command will switch the X-talk interfaces OFF. When they are OFF, a toggle command will switch the X-talk interfaces ON.

The cycle time sets how long X-talk interfaces will be in the opposite state. For example, when the cycletime is 8 seconds, and an CYCLEON command is sent, the sequence is: Output switches OFF - waits 08 seconds - then switches ON.

When the X-talk interfaces are switched off, the entire X-talk section of NEO is cut from power, including the 2 X-talk status LEDs.

4. Network connectivity and Sensmi Dashboard

NEO6xx models can connect to your network via its UTP connector. When connected, pre-built online dashboards, powered by Sensmi, provide real-time power measurement data and power controls.

4.1 Provisioning of controller

The NEO controller can be provisioned with your Sensmi credentials to assign it to your Sensmi account and access the online dashboard. In this section, the API commands for provisioning the controller are provided.

Required provisioning commands, in order:

SENSMI[PROV=ON]

Enter provisioning mode

Sensmi reply when device is already

Sensmi reply:

SENSMI[ENTERING PROVISIONING] SENSMI[ALREADY IN PROVISIONING]

in provisioning mode:

SENSMI[DEVICENAME=XXX...XXX]

Enter the *unique* name under which you want the NEO device to appear in your Sensmi account and dashboard

XXX...XXX = device name 32 characters max

Example command to set the device name to "SETUP ABC 123"

SENSMI[DEVICENAME=SETUP ABC 123]

Sensmi reply:

SENSMI[SETTING RECEIVED]

SENSMI[CUID=XXX...XXX]

Enter your fixed Sensmi customer ID

XXX...XXX = device name 32 characters max

Example command in case your Sensmi CUID is "NEXMOSPHERE"

SENSMI[CUID=NEXMOSPHERE]

Sensmi reply:

SENSMI[SETTING RECEIVED]

SENSMI [PROV=SAVE]

Save the entered provisioning data

Sensmi reply:

SENSMI[SETTING RECEIVED]

SENSMI[PROV=OFF]

Exit provisioning mode

Sensmi reply:

SENSMI[EXITED PROVISIONING]

Optional provisioning commands, to be sent after entering the Customer ID

SENSMI [COUNTRY=XXX...XXX]

Enter the country in which the NEO device is installed

Example command in case the country is "SPAIN"

SENSMI[COUNTRY=SPAIN]

Sensmi reply:

SENSMI[SETTING RECEIVED]

SENSMI [AREA=XXX...XXX]

Enter the area in which the NEO device is installed

Example command in case the area is "CATALUNYA"

SENSMI[AREA=CATALUNYA]

Sensmi reply:

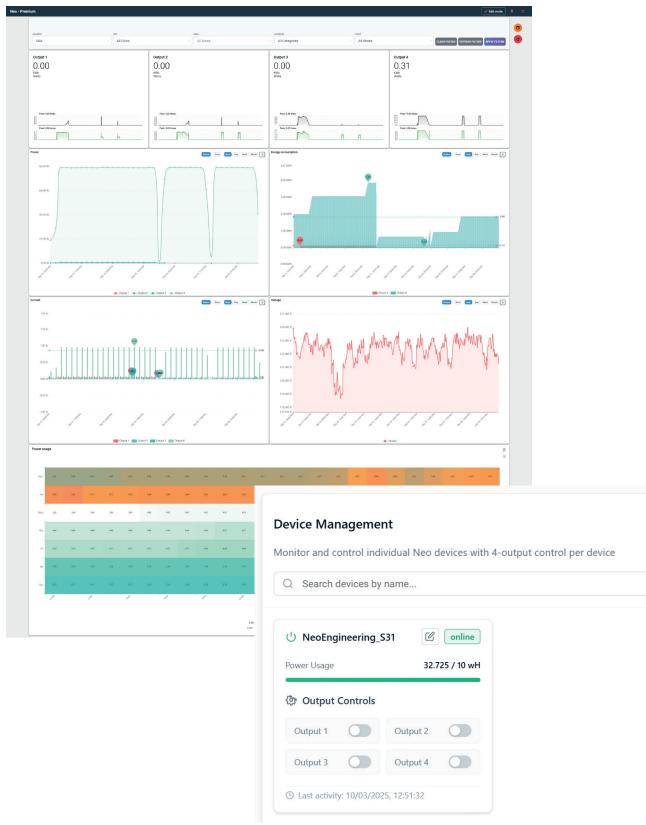
SENSMI[SETTING RECEIVED]

SENSMI[CITY=XXX...XXX]

Enter the city in which the NEO device is installed

Example command in case the city is "BARCELONA"

SENSMI[CITY=BARCELONA]


Sensmi reply:

SENSMI[SETTING RECEIVED]

4.2 Dashboard

To view your NEO dashboard, log in to the Sensmi portal with your credentials. https://portal.sensmi.eu/

Once logged in, a dashboard similar to the screenshot below will be visible, enabling NEO users to see real-time power consumption and remotely switch the power outputs ON or OFF.

